Spectroscopic Measurements in the Shock Relaxation Region of a Hypervelocity Mach Reflection

نویسندگان

  • M. Sharma
  • J. M. Austin
  • N. G. Glumac
  • L. Massa
چکیده

We examine the spatial temperature profile in the non-equilibrium relaxation region behind a stationary shock wave. The normal shock wave is established through a Mach reflection configuration from an opposing wedge arrangement for a hypervelocity air Mach 7.42 freestream. Schlieren images confirm that the shock configuration is steady and the location is repeatable. Emission spectroscopy is used to identify dissociated species and to obtain vibrational temperature measurements using the NO and OH A-X band sequences. Temperature measurements are presented at selected locations behind the normal shock. LIFBASE is used as the simulation spectrum software for OH temperature-fitting, however the need to access higher vibrational and rotational levels for NO leads to the use of an in-house developed algorithm. For NO, results demonstrate the contribution of higher vibrational and rotational levels to the spectra at the conditions of this study. Very good agreement is achieved between the experimentally measured NO vibrational temperatures and calculations performed using a state-resolved, one-dimensional forced harmonic oscillator thermochemical model.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NO and OH Spectroscopic Vibrational Temperature Measurements in a Post-Shock Relaxation Region

A HYPERSONIC conditions encountered during atmospheric planetary entry, molecular real gas processes become significant. Thermal transitions and chemical reactions are known to affect flight aerodynamics, for example increased energy absorption by chemical reactions leads to a decreased shock standoff distance for a given test configuration [1]. Behind a strong shock, high temperatures and larg...

متن کامل

A Semi-empirical Model to Predict the Attached Axisymmetric Shock Shape

In this work, a simple semi-empirical model is proposed, based on Response Surface Model, RSM, to determine the shape of an attached oblique shock wave emanating from a pointed axisymmetric nose at zero angle of attack. Extensive supersonic visualization images have been compiled from various nose shapes at different Mach numbers, along with some others performed by the author for the present p...

متن کامل

Afrl-osr-va-tr-2015-0040 Transition Delay in Hypervelocity Boundary Layers by Means of Co2/acoustic Insta

The potential for hypervelocity boundary layer stabilization was investigated using the concept of damping Mack’s second mode disturbances by vibrational relaxation of carbon dioxide (CO2) within the boundary layer. Experiments were carried out in the Caltech T5 hypervelocity shock tunnel and the Caltech Mach 4 Ludwieg tube. The tests used 5-degree half-angle cones (at zero angle of attack) equ...

متن کامل

Study of Parameters Affecting Separation Bubble Size in High Speed Flows using k-ω Turbulence Model

Shock waves generated at different parts of vehicle interact with the boundary layer over the surface at high Mach flows. The adverse pressure gradient across strong shock wave causes the flow to separate and peak loads are generated at separation and reattachment points. The size of separation bubble in the shock boundary layer interaction flows depends on various parameters. Reynolds-averaged...

متن کامل

The Mach Reflection of Weak Shocks

We present numerical solutions of weak shock Mach reflections that contain a remarkably complex sequence of supersonic patches, triple points, and expansion fans immediately behind the leading triple point. This structure resolves the von Neumann triple point paradox of weak shock Mach reflection. During the second world war, von Neumann carried out an extensive study of shock reflection [5]. H...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009